Sunday 30 July 2017

Identificação Média Móvel Do Modelo


O primeiro passo no desenvolvimento de um modelo Box-Jenkins é determinar se a série é estacionária e se há alguma estacionalidade significativa que precisa ser modelada. A estacionança pode ser avaliada a partir de um gráfico de seqüência de execução. O gráfico de sequência de execução deve mostrar localização e escala constantes. Também pode ser detectado a partir de um gráfico de autocorrelação. Especificamente, a não-estacionaridade é frequentemente indicada por um gráfico de autocorrelação com decadência muito lenta. Diferindo para alcançar a estacionança Caixa e Jenkins recomendam a abordagem de diferenciação para alcançar a estacionararia. No entanto, ajustar uma curva e subtrair os valores ajustados dos dados originais também pode ser usado no contexto dos modelos Box-Jenkins. Na fase de identificação do modelo, nosso objetivo é detectar a sazonalidade, se existir, e identificar a ordem dos termos médias temporais sazonais e autorregressivos sazonais. Para muitas séries, o período é conhecido e um único termo de sazonalidade é suficiente. Por exemplo, para dados mensais, normalmente incluiríamos um termo sazonal de AR 12 ou um termo sazonal de MA 12. Para os modelos Box-Jenkins, não removemos explicitamente a sazonalidade antes de ajustar o modelo. Em vez disso, incluímos a ordem dos termos sazonais na especificação do modelo para o software de estimação ARIMA. No entanto, pode ser útil aplicar uma diferença sazonal aos dados e regenerar a autocorrelação e os gráficos de autocorrelação parcial. Isso pode ajudar na identificação do modelo do componente não-sazonal do modelo. Em alguns casos, a diferenciação sazonal pode remover a maioria ou todo o efeito da sazonalidade. Identificar p e q Uma vez que a estacionaridade e a sazonalidade foram abordadas, o próximo passo é identificar a ordem (ou seja, (p) e (q)) dos termos médios autorregressivos e móveis. Autocorrelação e parcelamentos de autocorrelação parcial As principais ferramentas para fazer isso são o gráfico de autocorrelação e o gráfico de autocorrelação parcial. O gráfico de autocorrelação da amostra e o gráfico de autocorrelação parcial da amostra são comparados com o comportamento teórico dessas parcelas quando a ordem é conhecida. Ordem de Processo Autoregressivo ((p)) Especificamente, para um processo AR (1), a função de autocorrelação da amostra deve ter uma aparência exponencialmente decrescente. No entanto, os processos AR de ordem superior são muitas vezes uma mistura de componentes sinusoidais exponencialmente decrescentes e amortecidos. Para processos autoregressivos de ordem superior, a autocorrelação da amostra precisa ser complementada com um gráfico de autocorrelação parcial. A autocorrelação parcial de um processo AR ((p)) torna-se zero em lag (p 1) e maior, então examinamos a função de autocorrelação parcial da amostra para ver se há evidência de uma partida de zero. Isso geralmente é determinado ao colocar um intervalo de confiança 95 no gráfico de autocorrelação parcial da amostra (a maioria dos programas de software que geram gráficos de autocorrelação de amostra também irá traçar esse intervalo de confiança). Se o programa de software não gerar a banda de confiança, é aproximadamente (pm 2sqrt), com (N) o tamanho da amostra. Ordem do processo médio móvel ((q)) A função de autocorrelação de um processo MA ((q)) torna-se zero no intervalo (q 1) e maior, então examinamos a função de autocorrelação da amostra para ver onde ela se torna essencialmente zero. Fazemos isso colocando o intervalo de confiança 95 para a função de autocorrelação da amostra no gráfico de autocorrelação da amostra. A maioria dos softwares que podem gerar o gráfico de autocorrelação também podem gerar esse intervalo de confiança. A função de autocorrelação parcial da amostra geralmente não é útil para identificar a ordem do processo de média móvel. Forma da Função de Autocorrelação A tabela a seguir resume como usamos a função de autocorrelação da amostra para identificação do modelo. Aplicação: Verifique os lotes de Autocorrelação de Randomness (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados ​​na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o tipo primário de aleatoriedade que discutimos no Manual), verificar a autocorrelação é tipicamente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nesses casos, uma série de testes, que podem incluir a verificação da autocorrelação, são aplicados, uma vez que os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h Os gráficos de autocorrelação são formados por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis ​​e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as bandas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as bandas de confiança no gráfico acima. Os gráficos de autocorrelação também são usados ​​no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva. O que é um modelo apropriado para as séries temporais observadas. O modelo é válido e suficiente. A ssqrt da fórmula é válida. Importância: Garantir a validade das conclusões de engenharia. A aleatoriedade (juntamente com modelo fixo, variação fixa e distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. O pressuposto de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente ligada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade se mantenha. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e inválidas. Em suma, se o analista não verificar a aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. O plano de autocorrelação é uma excelente maneira de verificar essa aleatoriedade.8.4 Modelos médios em movimento Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo semelhante a regressão. Y c e theta e theta e dots theta e, onde et é ruído branco. Nós nos referimos a isso como um modelo de MA (q). Claro, não observamos os valores de et, portanto, não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser pensado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel que discutimos no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, ao passo que o alavanca média móvel é usada para estimar o ciclo de tendência dos valores passados. Figura 8.6: Dois exemplos de dados de modelos em média móveis com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0.8e t-1. Direito: MA (2) com t e t - e t-1 0.8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com zero médio e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com os modelos autorregressivos, a variância do termo de erro e só alterará a escala da série, e não os padrões. É possível escrever qualquer modelo AR (p) estacionário como modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et phi13y phi12e phi1e phi1e e amptext end Provided -1 lt phi1 lt 1, o valor de phi1k ficará menor quando k for maior. Então, eventualmente, obtemos et et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Então, o modelo MA é chamado de inversível. Ou seja, podemos escrever qualquer processo de MA (q) inversível como um processo AR (infty). Os modelos invertidos não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que os tornam mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaria. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.

No comments:

Post a Comment